Geometric Optics – hitting complexity first

I started what may end up being the last unit in physics with the idea that I would do things differently compared to my usual approach. I taught optics as part of Physics B for a few years, and as many things end to be in that rushed curriculum, it was fairly traditional. Plane mirrors, ray diagrams, equations. Snell’s law, lenses, ray tracing, equations. This was followed by a summary lesson shamefully titled “Mirrors and lenses are both similar and different” , a tribute to the unfortunate starter sentence for many students’ answers to compare and contrast questions that always got my blood boiling.

This time, given the absence of any time pressure, there has been plenty more space to play. We played with the question of how big a plane mirror must be to see one’s whole body with diagrams and debate. We messed with a quick reflection diagram of a circular mirror I threw together in Geogebra to show that light seems to be brought to a point under certain conditions. Granted, I did make suggestions on the three rays that could be used in a ray diagram to locate an image – that was a bit of direct instruction – but today when the warm up involved just drawing some diagrams, they had an entry point to start from.

After drawing diagrams for some convex and concave mirrors, I put a set of mirrors in front of them and asked them to set up the situation described by their diagrams. They made the connection to the terms convex and concave by the labels printed on the flimsy paper envelopes they were shipped in – no big introduction of the vocabulary first was needed, and it would have broken the natural flow of their work. They observed images getting magnified and minefied, and forming inverted or upright. They gasped when I told them to hold a blank sheet of paper above a concave mirror pointed at one of the overhead lights and saw the clear edges of the fluorescent tubes projected on the paper surface. They poked and stared, mystified, while moving their faces forward and backward at the focal point to find the exact location where their face shifted upside down.

After a while with this, I took out some lenses. Each got two to play with. They instantly started holding them up to their eyes and moving them away and noticing the connections to their observations with the mirrors. One immediately noticed that one lens flipped the room when held at arms length but didn’t when it was close, and that another always made everything smaller like the convex mirror did. I asked them to use the terms virtual and real, and they were right on. They were again amazed when the view outside was clearly projected through the convex lens was held in front of a student’s notebook.

I hope I never take for granted how great this small group of students is – I appreciate their willingness to explore and humor me when I am clearly not telling them everything that they need to know to analyze a situation. That said, there is really something to the backwards model of presenting complexity up front, and using that complexity to motivate students to want to understand the basics that will help them explain what they observe. Now that my students see that the lenses are somehow acting like mirrors, it is so much easier to call upon their curiosity to motivate exploring why that is. Now there is a reason for Snell’s law to be in our classroom.

Without planting a hint of why anyone aside from over excited physics teachers would give a flying fish about normals and indices of refraction, it becomes yet one more fact to remember. There’s no mystery. To demand that students go through the entire process of developing physics from basic principles betrays the reality that reverse engineering a finished product can be just as enlightening. I would wager that few people read an instruction manual anymore. Even the design of help in software has changed from a linear list of features in one menu after another to a web of wiki-style tidbits of information on how to do things. Our students are used to managing complexity to do things that are not school related, things that are a lot more real world to them. There is no reason school world has to be different from real world in how we explore and approach learning new things.

3 thoughts on “Geometric Optics – hitting complexity first”

1. pshircliff says:

have you tried jello optics??

1. I haven’t, but it sounds delicious! I see it as a good way to get them creating, exploring, and testing at home,